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H igh-throughput screening (HTS) currently plays
a major role as a source of novel active mol-
ecules that serve as leads for drug development

and as tools for biomedical research. Furthermore, a va-
riety of virtual screening (VS) methods including target
structure- (1) and ligand-based approaches (2) can also
be employed to aid in the identification of active com-
pounds. However, all of these methods are limited in
their accuracy, and to this date it has been essentially
impossible to rationalize why certain methods succeed
or fail on a given target (3). Hence, successful VS appli-
cations are currently far from being routine. Neverthe-
less, VS methods are widely applied, and a plethora of
approaches of often very different computational com-
plexity are being investigated for hit identification (3).

Ligand-based VS methods utilize information from
known active compounds as input, with the primary goal
to abstract from these reference compounds and iden-
tify structurally diverse hits (2, 3). Most ligand-based
methods require multiple active (and often also inac-
tive) compounds as references, and it is generally as-
sumed that the probability of VS success substantially
increases with the amount of available compound and
structure�activity relationship (SAR) data (2, 3). How-
ever, in a few instances, the use of single reference com-
pounds has also resulted in the identification of novel
hits (4). Failures in VS are often attributed to the avail-
ability of only limited SAR information, in addition to lim-
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ABSTRACT Virtual screening (VS) of chemical libraries formatted in silico pro-
vides an alternative to experimental high-throughput screening (HTS) for the iden-
tification of small molecule modulators of protein function. We have tailored a VS
approach combining fingerprint similarity searching and support vector machine
modeling toward the identification of small molecular probes for the study of cyto-
hesins, a family of cytoplasmic regulator proteins with multiple cellular functions.
A total of 40 new structurally diverse inhibitors were identified, and 26 of these
compounds were more active than the primary VS template, a single known inhibi-
tory chemotype, in at least one of three different assays (guanine nucleotide ex-
change, Drosophila insulin signaling, and human leukocyte cell adhesion). More-
over, these inhibitors displayed differential inhibitory profiles. Our findings
demonstrate that, at least for the cytohesins, computational extrapolation from
known active compounds was capable of identifying small molecular probes with
highly diversified functional profiles.
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ited accuracy of VS algorithms. Even in successful cases,
there are other complications. For example, structurally
diverse compounds identified through ligand-based VS
are generally less potent than reference molecules be-
cause they are selected to structurally depart from
known reference molecules that are often highly opti-
mized structural motifs (3).

Search calculations typically focus on compounds
that mimic a specific biological activity, and this “single
target�single activity” paradigm represents a concep-

tual cornerstone of VS efforts. Hence,
in addition to open methodological
questions, another largely unex-
plored topic in computational screen-
ing is targeting of multifunctional pro-
teins. There is currently only very
little, if any, information available as
to whether it is possible through VS to
identify small molecular probes that
modulate multiple cellular functional-
ities of target proteins.

Here, we have set out to investi-
gate this issue by targeting a class of
cytoplasmic proteins, the cytohesins,
which present a par excellence ex-
ample of a multifunctional protein
family. Cytohesins are small guanine
nucleotide exchange factors (GEFs)
that stimulate ADP ribosylation fac-
tors, ubiquitously expressed Ras-like
GTPases, which control various cellu-
lar regulatory networks ranging from
vesicle trafficking and integrin activa-
tion to insulin signaling (5−8). Mem-
bers of the cytohesin family include
cytohesin-1; cytohesin-2 (ARNO);
cytohesin-3, also known as Grp-1 in
humans and Steppke in Drosophila
(6); and cytohesin-4 (7). All four cur-
rently known cytohesins share a con-
served multidomain structure, i.e., a
Sec-7 domain harboring the GEF ac-
tivity, a pleckstrin-homology- (PH),
and a coiled-coil domain, as illus-
trated in Figure 1, panel a.
Cytohesin-1 and -2 were originally
identified on the basis of the ability
of their Sec-7 domain to interact with

the cytoplasmic �-2 chain of the integrin leukocyte
function-associated antigen-1 (LFA-1) �-2 (8), which im-
plicated cytohesin in �-2 integrin-mediated inside-out
signaling and immune cell adhesion. In inside-out sig-
naling, a number of cytoplasmic proteins, including
cytohesin-1 and -2, aid in altering the conformations of
the extracellular domains of integrins, thus enabling
their binding to cognate ligands (8, 9). Leukocytes in
particular depend on this process in order to leave the
vasculature and enter lymph nodes or inflamed tissues.

Figure 1. Cytohesin domain structure and functions. a) The domain organization of the cytohesins. The
N-terminal coiled-coil region is followed by the Sec-7 and a PH domain. The GEF and cell adhesion func-
tions reside in the Sec-7 domain (see text). b) Involvement of cytohesin in the insulin-signaling path-
way in human cells and in Drosophila, together with its role in integrin activation and cell adhesion,
and the structure of the pan-cytohesin inhibitor SecinH3. Cytohesin-mediated cell adhesion does not
involve guanine nucleotide exchange activtiy. Black arrows represent native signaling pathways, and
orange arrows represent pathways impaired through cytohesin/Steppke inhibition. Biological assay
used in our study monitored pathway stages highlighted in blue.
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Cytohesin-1 was subsequently shown to be involved in
mitogen-associated protein kinase signaling in tumor
cell proliferation as well as in T-helper cell activation and
differentiation (10, 11). Furthermore, cytohesin-3 was
very recently identified as an essential component of the
phosphatidylinositol-3-kinase (PI3K) pathway in insulin
signal transduction in human liver cells, Drosophila, and
mouse (6, 12). By contrast, cytohesin-4 has not yet
been functionally characterized.

Although small molecular probes that effectively in-
terfere with different cytohesin functions are highly de-
sirable, only one inhibitory chemotype has thus far been
described, the pan-active cytohesin inhibitor SecinH3,
a 1-, 2-, 4-substituted triazole (Figure 1, panel b), which
has been shown to target the Sec-7 domain of
cytohesins-1, -2, and -3 and inhibit their GEF activity
and cytohesin-associated functions including insulin
signaling (Figure 1, panel b) (12). Insulin- or, in the case
of Drosophila melanogaster, Drosophila insulin-like
peptides (Dilps)-stimulation leads to activation of pro-
tein kinase B (vertebrates, PKB/Akt; Drosophila, pPKB/
dAkt) through phosphorylation. PKB/pPKB then translo-
cates into the nucleus where it phosphorylates the
forkhead-box transcription factors FoxO1a and FoxO3a
in vertebrates or dFOXO in Drosophila, leading to their
deactivation and nuclear exclusion. FoxO1a and FoxO3a
regulate the expression of the insulin-like growth factor
binding protein 1 (IGFBP1), whereas dFOXO regulates
the gene expression of d4E-BP, Steppke, and the insu-
lin receptor (6). SecinH3 inhibits the cytohesin/Steppke-
dependent activation of PKB/Akt and pPKB/dAkt, re-
spectively, which results in an increase of nuclear
FoxO1a, FoxO3a, and dFOXO levels and in transcription
of IGFBP1 (12, 13) and d4E-BP (6), respectively.

Cytohesin-1 and -2 also interact with the cytoplasmic
sequence of the LFA-1 �2 chain, CD18, which reflects a
role of these proteins in signal complex assembly with
the cytoplasmic tail of �2 integrins (8). This interaction
results in an increased avidity of integrin�substrate
binding, and thereby cytohesins mediate �2 integrin-
dependent adhesion of T-cells. The GEF activity of
cytohesin-1 appears to play a minor role, if any, in this
activity, and T-cell adhesion was only weakly inhibited
by SecinH3.

In addition to our motivation to explore the potential
of VS approaches on multifunctional proteins using cy-
tohesins as a test case, the computational search for cy-
tohesin inhibitors has also high practical relevance. Ow-

ing to the complexity of cytohesin functional assays
and the ensuing limited throughput capacity, an HTS
campaign covering the various biological activities of cy-
tohesins is difficult to conduct. We therefore have de-
signed a VS protocol to extrapolate from the SecinH3 tri-
azole chemotype, to explore its extended chemical
neighborhood, and to identify structurally diverse mol-
ecules that gradually depart from it. However, a princi-
pal caveat (as discussed above) has been that in this
case only very limited ligand information was available
as a starting point for VS. Thus, the investigation was
considered a challenging test case.

RESULTS AND DISCUSSION
Virtual Screening Strategy. For our cytohesin inhibi-

tor search, we have designed a VS strategy utilizing
methods that had to meet three criteria, i.e., the meth-
ods should be (i) capable of operating on the basis of
only limited reference information (SecinH3 and a few
related compounds), (ii) based on chemically intuitive
and simple molecular representations, and (iii) widely
available. Therefore, two standard methodologies were
combined. Chemical similarity searching using three 2D
molecular fingerprints (FPs) of distinct design was car-
ried out to rank database compounds in the order of de-
creasing molecular similarity to SecinH3 and to select
candidate compounds ranging from SecinH3 analogues
to distantly related structures. Accordingly, in the follow-
ing, this approach is referred to as a “similarity search”.
Furthermore, in order to focus the search on increasingly
diverse molecules, we also conducted support vector
machine (SVM) calculations using 2D molecular finger-
prints as descriptors. Thus, for both fingerprint and SVM
searching, reference information was exclusively ex-
tracted from simple 2D molecular graphs of reference
molecules. For SVM analysis, SecinH3 and only seven
other compounds including SecinH3 analogues and in-
house hits from the original aptamer screening assay
were used as positive training set compounds, and
1000 randomly selected database compounds were
used as negative training examples. For machine learn-
ing methods, this training set is rather limited in size.
Two SVM models based on different molecular repre-
sentations (descriptors) were developed and applied to
predict active database compounds and rank them.
From SVM calculations, only compounds with chemical
scaffolds distinct from that of SecinH3 were selected.

ARTICLE

www.acschemicalbiology.org VOL.5 NO.9 • 839–849 • 2010 841



Accordingly, this approach is referred to as a “diversity
search”.

From each individual FP search list, the top 20 candi-
date molecules were selected, and from each SVM rank-
ing, the top 50 candidates. In addition, the top 1000
molecules were compared in FP and SVM rankings, and
any compound occurring in at least two FP or two SVM
lists was also selected. This protocol resulted in the pre-
selection of 169 similarity search and 114 diversity
search candidates, and 145 of these compounds could
be acquired from commercial sources.

Biological Evaluation. We have used three different
biological assays to test our 145 candidate compounds
for their ability to interfere with cytohesin functions. Iso-
lated ARNO-Sec-7 and ARF1 were used in a guanine
nucleotide exchange assay in order to identify candi-
date compounds inhibiting cytohesin GEF activity. In ad-
dition, in Drosophila S2 tissue culture cells, compounds
were tested for their ability to interfere with cytohesin-
dependent insulin signaling, which results in the tran-
scriptional activation of dFOXO-dependent target genes
such as 4EB-P (Figure 1). Furthermore, the potential of
candidate compounds was evaluated to block
cytohesin-mediated cell adhesion of human leukocytes.

The initial screen of our 145 candidates revealed
that �40 compounds showed measurable activity in
one or more of our assays. We then focused on those in-
hibitors that were more active than SecinH3. Accord-
ingly, for classifying a candidate compound as a hit, the
following criteria were applied: at least 10% stronger in-
hibition than SecinH3 in guanine nucleotide exchange
assays, at least 50% reduction relative to SecinH3 in cell
adhesion assays using either PMA- or OKT3-stimulated
cells, or at least a 2-fold increase in dFOXO-dependent
4E-BP levels. On the basis of these criteria, 26 active
compounds were selected and confirmed as hits. These
compounds, their primary activity, and source informa-
tion are reported in Table 1, and assay results are shown
in Figure 2. Because all of these inhibitors were active
in nucleotide exchange assays (Figure 2, panel a), these
compounds bound to the Sec-7 domain.

Fifteen compounds were more active than SecinH3
in nucleotide exchange assays, seven in dFOXO, and
11 in adhesion assays. For individual compounds, im-
provements in inhibition levels over SecinH3 were in
part substantial. For example, compound 16 (consecu-
tive number on the 145 candidate selection list; no rank
information), termed Secin16, induced a �20-fold in-

crease in dFOXO-dependent 4E-BP transcript levels com-
pared to SecinH3 and was the by far most active com-
pound in Drosophila assays. The IC50 value of Secin16
measured for the isolated Sec-7 domain of cytohesin-2
was 3.1 �M compared to 11.4 �M for SecinH3. With an
IC50 value of 2.1 �M, Secin69 was slightly more active
than Secin16, and the most active new inhibitor in
nucleotide exchange assays. Both Secin16 and 69 inhi-
bition displayed clear dose�response behavior
(Figure 2, panel b), indicating specificity of the interac-
tions. Secin69 was also active in cell adhesion assays.
However, the apparent inhibitory effect of Secin69 in cell
adhesion was due to strong toxicity of the compound
on Jurkat cells, as assessed by Trypan Blue staining, in
contrast to Secin16. In cell adhesion assays, Secin107
was most active, reducing adhesion to only �9% of the
SecinH3 level. Secin16 and 132 were the only two com-
pounds with a better inhibition compared to that of
SecinH3 in all three assays.

Because all inhibitors were active in nucleotide ex-
change assays and dose�response behavior was ob-
served, binding to the Sec-7 domain was specific. For
the overall most promising compound, Secin16, we also
confirmed Sec-7 domain binding by surface plasmon
resonance (using a novel chip design and detection
method; see Methods). Experiments were performed
measuring binding and dissociation of Secin16 on the
immobilized cytohesin-1 Sec-7 domain at different con-
centrations. As shown in Figure 2, panel e, binding was
concentration-dependent and saturation of binding was
observed, resulting in an estimated KD of 7.5 �M. Un-
der the same experimental conditions, saturation of
binding was difficult to achieve for SecinH3, consistent
with weaker binding. We further confirmed the interac-
tion of Secin16 with the Sec7 domain by performing mi-
croscale thermophoresis measurements (27, 28). In
good agreement with the SPR data, a KD of 5 � 1 �M
for the binding of Secin16 to ARNO-Sec7 was obtained.
The KD for SecinH3 was higher than for Secin16 but
could not be quantified due to the limited solubility of
SecinH3 under these conditions, which prevented satu-
ration of binding.

Figure 3 compares SecinH3, Secin16, 69, 107, and
132. Secin69, 16, and 132 are more potent inhibitors
in nucleotide exchange assays than SecinH3 (IC50

11.4 �M), with IC50 values of 2.1, 3.1, and 8.0 �M, re-
spectively, whereas Secin107 is slightly less potent
(14.9 �M).

842 VOL.5 NO.9 • 839–849 • 2010 www.acschemicalbiology.orgSTUMPFE ET AL.



Virtual Screening Assessment. Of the 26 confirmed
hits, 11 were identified by similarity and 15 by diversity
searching (Table 1). Although all three FPs identified ac-
tive compounds, there was a clear preference for the
pharmacophore-type descriptor GpiDAPH3 in SVM cal-
culations, where this FP identified all 15 hits (Table 1).
None of the 26 active compounds was identified by
both similarity and diversity searching, which highlights
the need for complementary methodologies in computa-
tional hit identification (2). Interestingly, the most ac-
tive compounds in individual assays were identified by
SVM calculations. However, compound potency was not
utilized as a parameter in any of these VS calculations

(which generally applies to current VS approaches). We
have applied different standard VS methods using a
search protocol specifically tailored toward available Se-
cin reference compound information. Hence, we would
anticipate that other ligand-based VS approaches would
in this case also be capable of identifying active
compounds.

Structural Diversity. The 26 inhibitors were character-
ized by a high degree of scaffold (core structure) diver-
sity. The spectrum of structurally diverse active com-
pounds is illustrated in Figure 4. A total of 23 different
chemical scaffolds were observed among active com-
pounds that corresponded to 21 unique carbon skel-

TABLE 1. Confirmed active compoundsa

ZINC ID Compound Hit Strategyb Methodologyc Supplier and code

ZINC00843734 Secin16 Consensus Diversity SVM GpiDAPH3 ASINEX BAS00892957
ZINC01176821 Secin132 Consensus Diversity SVM GpiDAPH3 VitasM STK134679
ZINC02657221 Secin67 Cell adhesion Similarity MACCS Enamine T5248258
ZINC07440926 Secin92 Cell adhesion Similarity GpiDAPH3 Enamine Z92738532
ZINC09223232 Secin105 Cell adhesion Diversity SVM GpiDAPH3 Enamine T5459575
ZINC09223915 Secin107 Cell adhesion Diversity SVM GpiDAPH3 Enamine T5463465
ZINC09984314 Secin114 Cell adhesion Diversity SVM GpiDAPH3 Enamine T5513572
ZINC08188318 Secin144 Cell adhesion Similarity GpiDAPH3 VitasM STK248770
ZINC09469141 Secin111 Cell adhesion Diversity SVM GpiDAPH3 Enamine T5649682
ZINC09469139 Secin110 Cell adhesion, exchange Diversity SVM GpiDAPH3 Enamine T5649690
ZINC02853425 Secin134 Cell adhesion, exchange Diversity SVM GpiDAPH3 VitasM STK133412
ZINC00693466 Secin2 Exchange Similarity GpiDAPH3 AMRI CGX-03198864
ZINC02074567 Secin23 Exchange Diversity SVM GpiDAPH3 ASINEX BAS02593302
ZINC03582297 Secin44 Exchange Diversity SVM GpiDAPH3 ChemDiv K415�0179
ZINC06496235 Secin46 Exchange Diversity SVM GpiDAPH3 ChemDiv K415�0299
ZINC00710394 Secin61 Exchange Diversity SVM GpiDAPH3 Enamine T0505�6944
ZINC00949959 Secin62 Exchange Similarity FP overlap Enamine T0541�0562
ZINC07061995 Secin86 Exchange Similarity MACCS Enamine T5424282
ZINC07158197 Secin87 Exchange Similarity MACCS Enamine Z51130668
ZINC03582227 Secin122 Exchange Diversity SVM GpiDAPH3 LifeChemical F0546�0338
ZINC01206197 Secin133 Exchange Diversity SVM GpiDAPH3 VitasM STK233507
ZINC02890693 Secin69 FoxO, exchange Diversity SVM GpiDAPH3 Enamine T5891443
ZINC00693668 Secin3 FoxO Similarity FP overlap AMRI CGX-03199266
ZINC04753173 Secin7 FoxO Similarity GpiDAPH3 AMRI CGX-02136485
ZINC06833057 Secin13 FoxO Similarity FP overlap AMRI CGX-01218314
ZINC06872274 Secin15 FoxO Similarity FP overlap AMRI CGX-01216930

aAll compounds identified to be more active than SecinH3 are reported with their consecutive selection set number (ID), ZINC database
code, and supplier information. bSearch strategy (i.e., similarity or diversity search). cVirtual screening method and molecular descriptor that
identified each compound.
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etons (see Methods) distinct from that of SecinH3. Ac-
tive molecules sharing the SecinH3 core structure were
not identified. Furthermore, only two subsets of active
compounds had the same carbon skeleton: Secin16
and 132, and Secin3, 13, 15, 110, and 111, respec-
tively. The compounds that were most active in each as-
say had distinct structures, as illustrated in Figure 3.

The high degree of structural diversity among the in-
hibitors raises the question why holistic molecular simi-
larity methods were successful in this case. Detailed
structural comparisons of inhibitors provided some
clues. In Figure 4, two overlapping molecular regions in
SecinH3 are highlighted, each consisting of three rings.
The substructure highlighted in pink contains the tria-

Figure 2. Experimental results. Assay results are shown for all tested compounds that were more active than SecinH3 in at least one of three assay
systems. Threshold lines indicate the inhibition level of SecinH3. Filled bars represent inhibitors that were more active than SecinH3 according to our
selection criteria. Results for the two consensus hits (Secin16 and 132) are shown in black. a) Guanine nucleotide exchange. b) Dose�response
characteristics of Secin16 and Secin69 in nucleotide exchange. c) Drosophila assays. d) Cell adhesion assay; the average of PMA- and OKT3-based
adhesion is reported. e) Surface plasmon resonance sensorgrams of the interaction of Secin16 with the immobilized Sec-7 domain of cytohesin-1 at
the indicated concentrations. Shown are fitted binding and dissociation curves. From the top to the bottom, tracings correspond to the following con-
centrations of Secin16: 100, 50, 10, 5, 2.5, and 1 �M.
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zole moiety in the center with ring substituents at its 1-
and 2-position, and the cyan substructure contains the
2-substitued triazole as the terminal ring. Although the
inhibitors were characterized by a high degree of struc-
tural diversity, substructures resembling one or the
other of these SecinH3 fragments were recurrent among
them. For example, all inhibitors of the inner compound
diversity layer in Figure 4 contained substructures remi-
niscent of the pink SecinH3 fragment, and most inhibi-
tors in the outer two layers contained substructures
reminiscent of either the pink or cyan fragment. These
substructure resemblances explain why similarity meth-
ods were able to detect an array of structurally diverse
active compounds by extrapolating from the SecinH3
chemotype.

Differentiated Functions. In addition to structural di-
versity, active compounds were characterized by differ-
ential inhibitory profiles (Table 1, Figure 4). Two inhibi-
tors sharing the same scaffold, Secin16 and Secin132,
were strongly active in all three assays. Other com-
pounds were more active than SecinH3 in two of three
or individual assays. One compound had dual activity in
inhibiting Drosophila insulin signaling and nucleotide
exchange (Secin69) and two others had dual activity in

cell adhesion and nucle-
otide exchange assays
(Secin110 and 134). By
contrast, no compound
with dual activity in Dro-
sophila insulin signaling
and cell adhesion assays
was identified. Further-
more, four compounds
were predominantly active
in down-regulating Dro-
sophila insulin signaling,
10 in nucleotide exchange,
and seven in cell adhe-
sion assays. Thus, chemo-
type diversity corre-
sponded to a spectrum of
differentiated inhibitory
functions. However, subtle
structural changes among
active compounds were
also sufficient to act as a
functional switch, as re-
vealed by the two com-

pound subsets sharing very similar core structures, as
discussed above. For example, Secin13 was only active
in inhibiting insulin signaling, whereas Secin110 shar-
ing the same core structure was active in cell adhesion
and GDP/GTP exchange assays, but not in inhibiting in-
sulin signaling. Moreover, three compounds within this
series were only active in down-regulating insulin signal-
ing (Secin3, 13, and 15), another active compound ex-
clusively abrogated cell adhesion (Secin111), and the
remaining compound inhibited cell adhesion and nucle-
otide exchange (Secin110). Among compounds with dif-
ferential inhibitory profiles, four strong cell adhesion in-
hibitors were identified (Secin107, 111, 114, and 144),
which were either comparable to SecinH3 in nucleotide
exchange assays (Secin107 and 111) or less active (Se-
cin114 and 144). Thus, although these compounds inhib-
ited cytohesin-dependent nucleotide exchange, they
were predominantly inhibitors of signaling events lead-
ing to adhesion, in contrast to SecinH3.

Conclusions. In our study, we have investigated the
potential of VS approaches to identify novel active com-
pounds as molecular probes for studying multifunc-
tional cytohesin proteins. For this target protein family,
the identification of novel inhibitors was also highly rel-

Figure 3. Secin comparison. The structures of SecinH3, 16, 69, 107, and 132 are shown,
and IC50 values for nucleotide exchange inhibition are reported.
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evant for practical applications. Homologous genes of-
ten exhibit redundant or promiscuous physiological ac-
tivities, making it difficult to study their function by
genetic knock-out or siRNA knock-down. Unambiguous
phenotypic effects are frequently observed only when
two or more members of a homologous protein family
are targeted simultaneously. Pharmacological ap-
proaches in which pan-target family inhibitors are ap-
plied have proven a useful alternative to these genetic
strategies. Accordingly, with SecinH3, a pan-cytohesin
inhibitor was successfully utilized to elucidate the in-
volvement of cytohesins and Steppke in insulin signal-
ing. By contrast, SecinH3 was only a weak inhibitor of
signaling events leading to cytohesin-mediated cell ad-

hesion. Thus, the SecinH3 inhibitory profile provided a
meaningful starting point for our VS analysis.

A key question has been whether computational ex-
trapolation from SecinH3 might identify compounds that
not only are active but display differential inhibitory pro-
files, an issue that had not been addressed before. By
evaluating VS candidate compounds selected in three
different assay systems, an array of structurally diverse
active molecules was indeed identified that inhibited cy-
tohesin functions with highly differentiated inhibitory
profiles. It cannot be ruled out that newly identified ac-
tive compounds also bind to targets other than cyto-
hesins and thereby elicit differential functional effects.
However, the template compound SecinH3 is known to

Figure 4. Structural spectrum of active compounds. From the left to the right, exemplary hits from all assays are shown and ar-
ranged in layers that are structurally increasingly dissimilar to SecinH3. In SecinH3, two overlapping molecular regions are
highlighted, each consisting of three rings (shown in pink and cyan, respectively), which resemble alternative substructures
found in many inhibitors. The color scheme reflects assay activity: red, GDP/GTP exchange; blue, Drosophila assays; green,
cell adhesion assays. Compounds active in two assays are bicolored and compounds active in all three assays are shown in
black. Molecules discussed in the text have black labels.
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inhibit nucleotide exchange, insulin signaling, and cell
adhesion (albeit only weakly), and the new inhibitors are
characterized by the same functional profile but dis-
play changes in the relative magnitude of inhibitory ef-
fects. Because all new inhibitors specifically bind to the
Sec-7 domain, it is likely that this domain is their pri-
mary target (but again, binding of these compounds and
also SecinH3 to additional targets can not be ruled
out).

A total of 26 newly identified inhibitors were more po-
tent than SecinH3 in one or more assays, which is un-
usual for active compounds identified by VS, including
strong inhibitors of cytohesin-mediated cell adhesion.
The results indicate that VS approaches have the poten-
tial to identify molecular probes with differentiated func-
tions, despite intrinsic limitations of computational
screening. Methodologically, it is interesting to note
that SVM calculations utilizing 2D molecular representa-
tions and only a few active training examples were very
effective in detecting compounds with Secin activity.
Considering general VS standards (1−3), the search for
cytohesin Sec-7 domain-directed inhibitors has been a
perhaps surprisingly successful project, in terms of the
number of novel active compounds that were identified,
their potency relative to that of the reference molecules,

and their degree of structural diversity. Different targets
display different ligand binding constraints, and success
rates of compound screening often vary considerably.
Varying degrees of substructure resemblance between
different inhibitors that we have observed here, as dis-
cussed above, might suggest that binding of Secins to
the Sec-7 domain can be achieved through overlapping
alternative pharmacophore elements. Because all in-
hibitors were active in nucleotide exchange assays, they
are very likely to bind to the same site, but variations in
binding modes might perhaps occur. Whether different
binding modes might exist that correspond to different
functions or multiple binding sites remains to be eluci-
dated. Regardless, the newly identified cytohesin inhibi-
tors represent a spectrum of structural and functional di-
versity. Secin16 and 132 consistently improved the
efficacy of SecinH3 in all three assay systems and
should hence be attractive molecular probes for de-
tailed investigations of cytohesin signaling functions.
Moreover, other compounds, in particular Secin107 and
144, were found to be strong inhibitors of cytohesin-
mediated cell adhesion, thus further extending the po-
tential to analyze different cytohesin functions using
small molecules.

METHODS
Virtual Screening. For similarity searching, three 2D molecu-

lar fingerprints were utilized: MACCS (14), Molprint2D (15), and
GpiDAPH3 (Molecular Operating Environment, MOE) (16). These
2D FPs transform 2D molecular graphs into vectors of binary val-
ues. MACCS consists of 166 catalogued structural fragments
whose presence or absence in a test molecule is monitored. By
contrast, Molprint2D codes for the presence of layered atom en-
vironments (15). Furthermore, GpiDAPH3 is a 3-point
pharmacophore-type FP that assigns to each atom in a mol-
ecule one of eight atom types computed from three atomic prop-
erties (i.e., “pi system”, “donor”, and “acceptor”). MACCS and
GpiDAPH3 were calculated using the MOE (http://www.
chemcomp.com) and Molprint2D using public domain software
(http://www.molprint.com). Fingerprint overlap between refer-
ence and database compounds was quantified as a measure of
molecular similarity using the Tanimoto coefficient (Tc) (17)
and database compounds were ranked by decreasing similarity
values.

For support vector machine calculations, a publicly available
implementation was applied (SVMlight) (18), and two FPs,
Molprint2D and GpiDAPH3, were used as descriptors, respec-
tively. SVMs (19−21) are algorithms for supervised machine
learning that were originally developed for binary object classifi-
cation. SVM learning takes active (positive training examples)
and inactive molecules (negative training examples) into ac-
count. The basic idea of SVM learning is to construct a hyper-
plane (H) in descriptor space that best separates positive and

negative training examples by minimizing the classification er-
ror and maximizing the generalization performance to avoid
overfitting. The resulting model is then applied to classify ob-
jects (database compounds) as active or inactive depending on
which side of H they fall. Moreover, in order to obtain a ranking,
database compounds are sorted according to their distance
from H. Hence, compounds located in the positive half-space
are ranked by decreasing distances from H, followed by com-
pounds in the negative half-space ranked by increasing dis-
tances from H.

Computational screening was applied to �2.6 million virtu-
ally formatted publicly available ZINC compounds (22) that were
originally collected from commercial sources. FP database rank-
ings were filtered to remove compounds having a MACCS Tc
value greater than 0.95 compared to SecinH3 (i.e., nearly iden-
tical compounds). SVM rankings were filtered to retain only mol-
ecules with a MACCS Tc smaller than 0.85 to any known active
compound, hence supporting the selection of structurally di-
verse candidates.

Molecular Scaffold Analysis. Scaffolds were isolated from ac-
tive compounds by removal of all R-groups from ring systems
and aliphatic moieties linking ring systems. In addition, scaf-
folds were transformed into carbon skeletons by replacing all
heteroatoms with carbons and setting all bond orders to 1 (i.e.,
single bonds).

Guanine Nucleotide Exchange Assay. A total of 145 test com-
pounds were acquired from commercial sources according to
Table 1. Purity of these compounds was confirmed on the ba-
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sis of NMR and MS data provided by vendors. [�17]ARF1 and
ARNO-Sec-7 were subcloned into pET15 vectors (Novagen) as
described previously (12, 23−25). N-Terminal truncated
[�17]ARF1 (amino acids 18�181), lacking the first 17 amino ac-
ids and ARNO-Sec-7 (amino acids 50�255 of ARNO) were ex-
pressed in Escherichia coli and purified by Ni-NTA chromatogra-
phy (Ni-NTA agarose, Quiagen). GDP/GTP exchange was
measured on [�17]ARF1 by tryptophan fluorescence because a
large increase in intrinsic fluorescence of ARF occurs upon ex-
change of GDP for GTP (25, 26). All measurements were per-
formed in PBS pH 7.4, 3 mM MgCl2 at 37 °C. [�17]ARF1 (1 �M)
in PBS without MgCl2 was preincubated with GDP (80 �M) in
the presence of EDTA (2 mM) for 15 min. The bound GDP was
stabilized by addition of MgCl2 (final concentration 3 mM) and
incubation for 5 min. For each exchange reaction 250 nM
[�17]ARF1 was mixed with 10 nM ARNO-Sec-7 (total volume
200 �L) in the absence or presence of inhibitor. The reaction
was started by injection of GTP (50 �M). The tryptophan fluores-
cence was measured at excitation and emission wavelength of
280 and 340 nm, respectively. All fluorescent measurements
were performed with a Varioskan microplate reader (Thermo Sci-
entific), in 96-well plates. For analysis all data were fitted by lin-
ear regression. IC50 values were determined in 5-fold repeated ti-
tration assays.

Drosophila Assays. In order to evaluate potential interference
of candidate molecules with Drosophila insulin signaling, S2
cells (Schneider 2 insect cell line, Invitrogen) were grown under
starvation conditions and subsequently treated with insulin.
This triggers a strong activation of the insulin signaling cas-
cade resulting in the nuclear exclusion of dFOXO, which in turn
down-regulates the transcriptional repressor d4E-BP. In contrast,
when compounds inhibit the GEF activity of Steppke insulin sig-
naling is blocked and nuclear dFOXO activity increases, leading
to an up-regulation of d4E-BP transcription. This is measured by
quantitative RT-PCR and compared to the SecinH3 effect in the
same assay.

Cell Culture and Compound Treatment. S2 cells (0.5 � 106)
were grown in 24-well dishes in medium without FCS representing
starvation condition. Six hours after seeding cells were treated for
18 h with 10 �M compound or 10 �M SecinH3 as reference.
Twenty-two hours after seeding cells were treated with insulin (5 �g
mL�1, Sigma). Controls were performed without compound and/or
without insulin treatment. Compounds were dissolved in DMSO. Fi-
nal DMSO concentration in the cell culture medium was 0.5%.

RNA Isolation, cDNA synthesis and Real-Time PCR. A NucleoSpin
8 RNA Kit (Macherey-Nagel) was used for RNA preparation. Genomic
DNA digestion and first strand cDNA synthesis was carried out
with 250 ng of total RNA using QuantiTect Reverse Transkription
Kit (Qiagen). Quantitive PCR was performed with the iQ5 Real-Time
PCR detection system (Bio-Rad) and iQ SYBR Green Super Mix (Bio-
Rad). Three reactions were done in parallel for each template. Real
time PCR was analyzed using Bio-Rad iQ5 Optical System Software
and Microsoft Excel.

Cell Adhesion Assays. The ability of candidate compounds
was tested to inhibit adhesion of the T cell line Jurkat E6 to an
immobilized ICAM-1-Fc-fusion protein. On the T cell side, this in-
teraction is exclusively mediated by the �-2 integrin LFA-1 that
was enabled to bind to immobilized ICAM-1 through stimulation
of Jurkat cells with an anti-TCR antibody or with the phorbol es-
ter PMA (9). Cell adhesion to ICAM-Fc was carried out on 96-well
dishes and was read out by fluorescence detection of total in-
put verus bound cells which had been labeled with the DNA dye
H33342.

Jurkat E6.1 cells were incubated in RPMI, 0.5% DMSO, and
where indicated, 25 �M of the respective compound for 1 h at
37 °C, 5% CO2. After 30 min the cells were labeled with the fluo-
rochrome bisbenzimide trihydrochloride H33342 (Calbiochem)

at 12 mg mL�1 for 30 min at 37 °C. Two �105 cells/well were
subsequently dispensed into a 96-well plate at 100 �L well�1.
Prior to use plates were coated with 12 �g mL�1 goat antihuman
IgG for 90 min at 21 °C, blocked with 1% BSA in PBS overnight
and incubated for 60 min with culture supernatants from CV-1
cells expressing an ICAM-1-Fc fusion protein.

Cells were either stimulated with 5 �g mL�1 purified anti-
CD3 antibody (OKT3) or with PMA (50 ng mL�1), respectively.
Cells were allowed to adhere to the ICAM-1-Fc coated dishes for
15 min and unbound cells were washed off with HBSS. Adher-
ent cells were read out using a fluorescence plate reader
(Synergy-HT1, Biotek) at 485 nm in triplicates. “100% adhe-
sion” corresponds to the mean of OKT3 and PMA stimulated
samples treated with 25 �M SecinH3 as reference.

Surface Plasmon Resonance Assays. SPR experiments were
performed using a dual-channel SR7000DC system (Reichert
Inc.). Recombinant cytohesin-1 Sec-7 domain was covalently im-
mobilized on a HC1500m chip (Xantec bioanalytics GmbH).
The surface was activated with activation buffer (0.1 M NHS,
0.7% EDC, 0.05 M MES, pH 5.0), and the protein was applied
at a concentration of 50 �g mL�1 in 5 mM acetic acid, pH 4.5 to
the sample channel only. Unreacted residues on the chip sur-
face were quenched with 1 M ethanolamine, pH 8.5. Binding
and dissociation were performed in 1% DMSO containing PBS
at a flow rate of 50 �L min�1. Regeneration of the chip surface
was achieved by injection of 10 mM glycine HCl, pH 3.0. The net
sample channel response (which was calculated by subtracting
the response of the reference channel from that of the sample
channel) was corrected for blank buffer injection and DMSO in-
jection. Each curve represents at least three experiments. Data
processing and curve fitting was done using SPR V4.0.17
(Reichert Inc.) and Scrubber2 software (BioLogic Software).
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